On-line separation and characterization of hyaluronan oligosaccharides derived from radical depolymerization.

نویسندگان

  • Xue Zhao
  • Bo Yang
  • Lingyun Li
  • Fuming Zhang
  • Robert J Linhardt
چکیده

Hydroxyl radicals are widely implicated in the oxidation of carbohydrates in biological and industrial processes and are often responsible for their structural modification resulting in functional damage. In this study, the radical depolymerization of the polysaccharide hyaluronan was studied in a reaction with hydroxyl radicals generated by Fenton Chemistry. A simple method for isolation and identification of the resulting non-sulfated oligosaccharide products of oxidative depolymerization was established. Hyaluronan oligosaccharides were analyzed using ion-pairing reversed phase high performance liquid chromatography coupled with tandem electrospray mass spectrometry. The sequence of saturated hyaluronan oligosaccharides having even- and odd-numbers of saccharide units, afforded through oxidative depolymerization, were identified. This study represents a simple, effective 'fingerprinting' protocol for detecting the damage done to hyaluronan by oxidative radicals. This study should help reveal the potential biological outcome of reactive-oxygen radical-mediated depolymerization of hyaluronan.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Profiling pneumococcal type 3-derived oligosaccharides by high resolution liquid chromatography-tandem mass spectrometry.

Pneumococcal type-3 polysaccharide (Pn3P) is considered a major target for the development of a human vaccine to protect against Streptococcus pneumoniae infection. Thus, it is critical to develop methods for the preparation and analysis of Pn3P-derived oligosaccharides to better understand its immunological properties. In this paper, we profile oligosaccharides, generated by the free radical d...

متن کامل

Preparation and inhibitory activity on hyaluronidase of fully O-sulfated hyaluro-oligosaccharides.

Hyaluronan was partially depolymerized on a large-scale quantity using bacterial hyaluronidase (E.C. 4.2.2.1) for preparation of chemically fully O-sulfated oligosaccharides. The hyaluro-oligosaccharide (HAoligo) mixture obtained by partial digestion was repeatedly applied to low pressure gel permeation chromatographic separation to purify the size-unified oligosaccharide ranged from 4- to 20-m...

متن کامل

Fractionation of heparin-derived oligosaccharides by gradient polyacrylamide-gel electrophoresis.

Heparin-derived oligosaccharides, prepared by using flavobacterial heparinase, having a high degree of heterogeneity (sequence variability) were resolved into sharp well-defined bands by using polyacrylamide gel electrophoresis (PAGE). The use of a stacking gel and a high-density-pore-gradient resolving gel was primarily responsible for the success of this separation. Low-Mr standards of known ...

متن کامل

Liquid chromatography/mass spectrometry sequencing approach for highly sulfated heparin-derived oligosaccharides.

Liquid chromatography/mass spectrometry (LC/MS) is applied to the analysis of complex mixtures of oligosaccharides obtained through the controlled, heparinase-catalyzed depolymerization of heparin. Reversed-phase ion-pairing chromatography, utilizing a volatile mobile phase, results in the high resolution separation of highly sulfated, heparin-derived oligosaccharides. Simultaneous detection by...

متن کامل

Acceptor specificity of the Pasteurella hyaluronan and chondroitin synthases and production of chimeric glycosaminoglycans.

The hyaluronan (HA) synthase, PmHAS, and the chondroitin synthase, PmCS, from the Gram-negative bacterium Pasteurella multocida polymerize the glycosaminoglycan (GAG) sugar chains HA or chondroitin, respectively. The recombinant Escherichia coli-derived enzymes were shown previously to elongate exogenously supplied oligosaccharides of their cognate GAG (e.g. HA elongated by PmHAS). Here we show...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Carbohydrate polymers

دوره 96 2  شماره 

صفحات  -

تاریخ انتشار 2013